

The Role of Punishment in Employee Performance

Age Hidayat, Kiki Farida Ferine, M.Isa Indrawan

Abstract

This study aims to analyze the effect of reward and competence on employee performance, with punishment as an intervening variable at BPJS Ketenagakerjaan Wilayah Sumatera Barat. This research employs a quantitative approach using a survey method. The population consists of all employees of BPJS Ketenagakerjaan Wilayah Sumatera Barat, with a total sample of 100 employees, selected using a census sampling technique. Data were collected through questionnaires and analyzed using Partial Least Square Structural Equation Modeling (PLS-SEM) with the assistance of SmartPLS software. The results indicate that reward and competence have a positive and significant effect on employee performance. Furthermore, reward and competence also have a positive and significant effect on punishment, and punishment has a positive and significant effect on employee performance. The indirect effect analysis shows that punishment mediates the relationship between reward and competence and employee performance. Therefore, it can be concluded that improving employee performance can be achieved through appropriate reward systems, enhanced employee competence, and the effective and proportional implementation of punishment.

Keywords: Reward, Competence, Punishment, Employee Performance, BPJS Ketenagakerjaan

Age Hidayat¹

¹Master Student of Management, Universitas Pembangunan Pancabudi, Indonesia
e-mail : agehidayat.ah@gmail.com¹

Kiki Farida Ferine², M.Isa Indrawan³

^{2,3}Master of Management, Universitas Pembangunan Pancabudi, Indonesia
e-mail: kikifarida@dosen.pancabudi.ac.id, isaindrawan@dosen.pancabudi.ac.id

2nd International Conference on Islamic Community Studies (ICICS)

Theme: History of Malay Civilisation and Islamic Human Capacity and Halal Hub in the Globalization Era
<https://proceeding.pancabudi.ac.id/index.php/ICIE/index>

Introduction

Employees are not merely policy implementers but are strategic assets that determine the sustainability and growth of an organization, especially in the public service sector. Therefore, employee performance within the organization is a primary factor in creating services that are fast, accurate, and responsive to public needs. To achieve optimal employee performance, organizations need to implement comprehensive human resource management strategies. One approach frequently used is through providing rewards or recognition to employees for their work achievements. Rewards can be financial, such as bonuses, incentives, and allowances, or non-financial, such as recognition, promotions, and career development opportunities. Targeted reward provision is believed to enhance employee motivation, loyalty, and productivity. The competence factor also contributes significantly to performance. Competence encompasses the knowledge, skills, and attitudes employees possess in carrying out their duties. Competent employees tend to work more efficiently, complete tasks faster, and adapt to organizational changes and demands. Continuous competence development through training and education is key to maintaining organizational competitiveness, especially amidst regulatory changes and dynamic public needs. However, in the practice of employee management, merely improving rewards and competence does not necessarily guarantee optimal performance. It is often found that even though rewards have been given and competence has been enhanced through various trainings, employees still exhibit undisciplined, unproductive work behavior, or even deviate from work procedures. This indicates the need for other corrective and repressive approaches, one of which is the application of punishment. Punishment, in an organizational context, is not solely aimed at penalizing but serves as a form of control and enforcement of rules that can minimize negative work behavior. Consistent and fair application of punishment can create a deterrent effect and foster discipline at work. Rewards and competence may be more effective in driving performance if accompanied by appropriate punishment implementation. In this effort, understanding how reward, competence, and punishment play a role in improving employee performance becomes very important. Moreover, demands for transparency, accountability, and public expectations for excellent service require this organization to have an effective and efficient employee management system. The results of this study are expected to contribute to the management of BPJS Ketenagakerjaan Solok in formulating strategies to improve employee performance through reward approaches, competence development, and proper punishment management.

Problem Formulation

1. Does Reward have a positive and significant effect on Employee Performance at the West Sumatra Regional Office of BPJS Ketenagakerjaan?
2. Does Competence have a positive and significant effect on Employee Performance at the West Sumatra Regional Office of BPJS Ketenagakerjaan?
3. Does Reward have a positive and significant effect on Punishment at the West Sumatra Regional Office of BPJS Ketenagakerjaan?
4. Does Competence have a positive and significant effect on Punishment at the West Sumatra Regional Office of BPJS Ketenagakerjaan?
5. Does Punishment have a positive and significant effect on Employee Performance at the West Sumatra Regional Office of BPJS Ketenagakerjaan?
6. Does Reward have a positive and significant effect on Employee Performance with Punishment as an intervening variable at the West Sumatra Regional Office of BPJS Ketenagakerjaan?
7. Does Competence have a positive and significant effect on Employee Performance with Punishment as an intervening variable at the West Sumatra Regional Office of BPJS Ketenagakerjaan?

Research Objectives

1. To test and analyze the effect of Reward on Employee Performance at the West Sumatra Regional Office of BPJS Ketenagakerjaan.
2. To test and analyze the effect of Competence on Employee Performance at the West Sumatra Regional Office of BPJS Ketenagakerjaan.
3. To test and analyze the effect of Reward on Punishment at the West Sumatra Regional Office of BPJS Ketenagakerjaan.
4. To test and analyze the effect of Competence on Punishment at the West Sumatra Regional Office of BPJS Ketenagakerjaan.
5. To test and analyze the effect of Punishment on Employee Performance at the West Sumatra Regional Office of BPJS Ketenagakerjaan.
6. To test and analyze the effect of Reward on Employee Performance with Punishment as an intervening variable at the West Sumatra Regional Office of BPJS Ketenagakerjaan.
7. To test and analyze the effect of Competence on Employee Performance with Punishment as an intervening variable at the West Sumatra Regional Office of BPJS Ketenagakerjaan.

Employee Performance

According to Gomes (2017), employee performance is the level of success of an employee in completing their work according to organizational responsibilities and goals. According to Mathis & Jackson (2017), performance is the result of employee work behavior measured based on certain standards or criteria established by the organization.

Employee Performance Indicators

According to Mathis & Jackson (2017), performance indicators are as follows:

1. Work results
2. Level of work errors
3. Task completion time
4. Creativity in work
5. Compliance with instructions

Punishment

According to Mondy & Martocchio (2017), Punishment is a corrective action given to employees for not complying with policies or work procedures, aimed at enforcing discipline and maintaining work order. According to Robbins & Judge (2017), Punishment is a form of negative consequence given to individuals for inappropriate behavior or violation of organizational rules, with the aim of reducing the likelihood of that behavior recurring.

Punishment Indicators

According to Mondy & Martocchio (2017), Punishment can be measured through:

1. Direct or written reprimands
2. Imposition of administrative sanctions
3. Suspension of promotion or salary increases
4. Job transfer (punitive transfer)
5. Dismissal as a final sanction

Reward

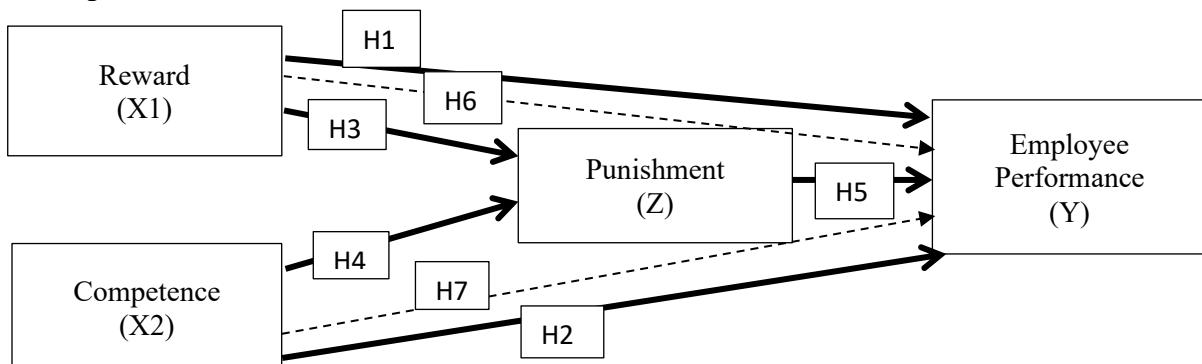
According to Noe et al. (2017), Reward is compensation or recognition received by someone as a result of achieving specific goals or performance, aiming to motivate and retain employees. According to Armstrong (2017), Reward is everything given by an organization to employees as a form of appreciation for their contribution and performance, which can be material or non-material.

Reward Indicators

According to Armstrong (2017), Reward indicators include:

1. Salary
2. Bonus
3. Allowances
4. Recognition
5. Non-material rewards (non-monetary rewards)

Competence


According to Spencer & Spencer (2017), Competence is the fundamental characteristic that distinguishes a person, such as knowledge, skills, motivation, values, and behavior, which contributes significantly to superior work performance. According to Boyatzis (2017), Competence is the ability possessed by an individual, encompassing the knowledge, skills, and attitudes needed to achieve effective work results in a job.

Competence Indicators

According to Spencer & Spencer (2017), Competence indicators are:

1. Motives
2. Traits
3. Self-concept
4. Knowledge
5. Skills

Conceptual Framework

Figure 1. Conceptual Framework

Hypotheses

- H1 Reward has a positive and significant effect on Employee Performance at the West Sumatra Regional Office of BPJS Ketenagakerjaan.
- H2 Competence has a positive and significant effect on Employee Performance at the West Sumatra Regional Office of BPJS Ketenagakerjaan.
- H3 Reward has a positive and significant effect on Punishment at the West Sumatra Regional Office of BPJS Ketenagakerjaan.
- H4 Competence has a positive and significant effect on Punishment at the West Sumatra Regional Office of BPJS Ketenagakerjaan.
- H5 Punishment has a positive and significant effect on Employee Performance at the West Sumatra Regional Office of BPJS Ketenagakerjaan.
- H6 Reward has a positive and significant effect on Employee Performance with Punishment as an intervening variable at the West Sumatra Regional Office of BPJS Ketenagakerjaan.
- H7 Competence has a positive and significant effect on Employee Performance with Punishment as an intervening variable at the West Sumatra Regional Office of BPJS Ketenagakerjaan.

Research Method

Type of Research

The researcher uses quantitative research. According to Sugiyono (2017), quantitative research method is a research method based on the philosophy of positivism, used to examine a specific population or sample and collect data using research instruments, analyze quantitative or statistical data with the aim of testing predetermined hypotheses.

Research Time and Location

This research was conducted from October to December 2025. This research was conducted at the offices of the West Sumatra Regional Office of BPJS Ketenagakerjaan (BPJS Ketenagakerjaan Solok, Bukittinggi, Padang).

Population

The research population used is 109 employees of the West Sumatra Regional Office of BPJS Ketenagakerjaan (BPJS Ketenagakerjaan Solok, Bukittinggi, Padang). Population is a general area consisting of objects or subjects that have specific quantities and characteristics determined by the researcher to be studied and then conclusions are drawn (Sugiyono, 2017).

Sample

This research uses a sample where the entire population of 109 employees will be sampled, using a saturated sampling technique. According to Sugiyono (2017), a sample is part of the number and characteristics possessed by the population.

Data Collection Technique

The data collection technique used is a questionnaire. The researcher distributed questionnaires to respondents to fill out. This research uses a survey method obtained from the original location by distributing questionnaires (Sugiyono, 2017). A questionnaire is a data collection technique carried out by providing written questions or statements submitted to respondents (Sugiyono, 2017).

Measurement Model Test (Outer Model)

To ensure that the variables, measurement instruments, and indicators used in this study have sufficient validity and reliability and that measurements are consistent across all research samples, this study uses a measurement model test as the outer model. In PLS-SEM data analysis, the measurement model test consists of validity and reliability tests.

Validity Test

a. Convergent Validity Test

One method to assess the correlation, or relationship, between a measurement instrument and its research construct is the convergent validity test (Cohen et al. 2018). This convergent validity test is intended to assess whether measurement instruments in a questionnaire can reliably and consistently measure a specific variable (Morling, 2017). The average variance extracted (AVE) value and factor loadings can be used to evaluate the convergent validity test. According to research by Latan (2015), an indicator is strongly correlated with the tested construct if its factor loading value is greater than 0.6 and its AVE value is greater than 0.5.

b. Discriminant Validity Test

To ensure that an instrument has validity capable of accurately measuring a variable and is not mixed with other variables, discriminant validity testing is a technique used to determine the extent to which measurement instruments in research can distinguish the measured variable

from other variables that should be different (Sugiyono, 2020). The availability of cross-loading values for each evaluated indicator provides an overview of the discriminant validity testing process. According to Kock & Lynn (2012), a variable is considered valid if each indicator has a higher cross-loading value compared to other variables not being measured.

Reliability Test

The process of determining how consistent and reliable research measurement instruments are in assessing the same variable over time and across respondents is known as reliability testing. The application of reliability testing in this study is done by testing composite reliability (CR) and Cronbach's alpha value. Henseler et al. (2016) state that a variable can be considered reliable if the composite reliability (CR) of a measurement instrument is greater than 0.7 and its Cronbach's alpha value is greater than 0.7.

Structural Model Test (Inner Model)

The structural model in this study is used as the inner model in PLS-SEM analysis to examine the relationships between the research model constructs. This structural model will determine the relationships between constructs in terms of the magnitude and significance of path coefficients among the constructs used in the research through several stages.

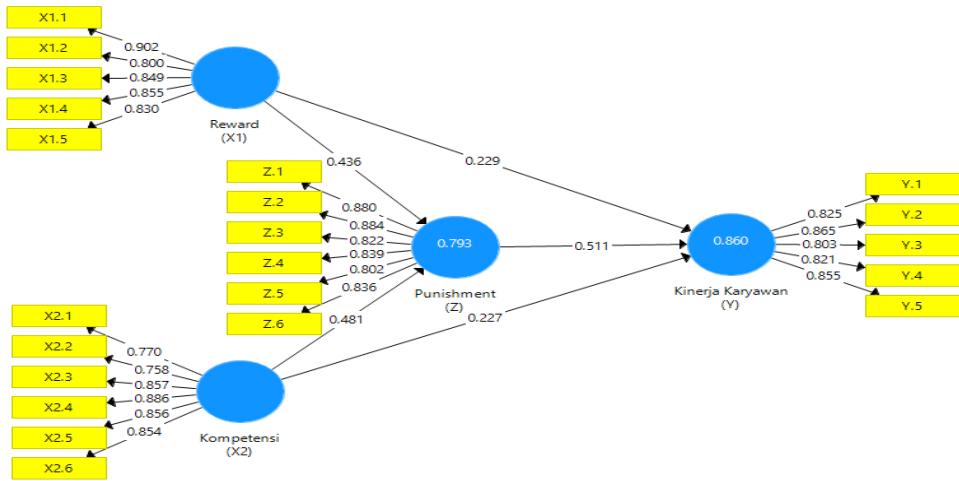
Inner Model Assumptions for PLS-SEM

According to Henseler et al. (2016), the assumption or condition for the inner model in PLS-SEM is the absence of multicollinearity issues between constructs measured using measurement instruments in the research model. The inner model assumption for PLS-SEM can be seen by evaluating the VIF (Variance Inflation Factor) value. The VIF value will show how strongly an independent variable is influenced by other independent variables in the research model, and a VIF value below 5 will indicate that multicollinearity between constructs does not occur in the research model (Hair et al., 2017).

Coefficient Of Determination Test (R²)

In the structural model, the R-Square (R^2) test in PLS-SEM is a metric for evaluating the variability of the dependent variable that can be explained by the independent variables (Henseler et al., 2016). Hair et al. (2017) clarified that when assessing variability, the term "R-Square" can have a value between 0 and 1, with values of 0.75, 0.50, and 0.25 indicating categories considered strong, moderate, and weak, respectively, in terms of explaining the variation of the dependent variable.

Hypothesis Testing


Hypothesis testing in the PLS-SEM inner model is performed using the bootstrapping technique in the SmartPLS application. After performing the bootstrapping technique, hypothesis testing can be done by looking at the path coefficient value, t-statistic, and p-value, where a positive path coefficient value indicates a positive relationship between two variables, and conversely, a negative value indicates a negative relationship between variables (Hair et al., 2017). Then, a t-statistic value greater than 1.96 and a p-value less than 0.05 indicate that the coefficient is statistically significant and reliable (Hair et al., 2017).

Results and Discussion

Outer Model Analysis

Convergent Validity

The structural model used in this study is illustrated in the figure below:

Source; Smart PLS 3.3.3

Figure 2. Outer Model

Smart PLS output for factor loading provides results in the table below: Outer Loading. In this study, there are relationships consisting of two substructures.

For substructure 1

$$Z = b1X1 + b2X2 + e1$$

$$Z = 0,436 + 0,481 + e1$$

For substructure 2

$$Y = b3X2 + b4X1 + b5Z + e2$$

$$Y = 0,229 + 0,227 + 0,511 + e2$$

Table 1. Outer Loadings

	Employee Performance_(Y)	Competence_(X2)	Punishment_(Z)	Reward_(X1)
X1.1				0,902
X1.2				0,800
X1.3				0,849
X1.4				0,855
X1.5				0,830
X2.1		0,770		
X2.2		0,758		
X2.3		0,857		
X2.4		0,886		
X2.5		0,856		
X2.6		0,854		
Y.1	0,825			
Y.2	0,865			
Y.3	0,803			
Y.4	0,821			
Y.5	0,855			
Z.1			0,880	
Z.2			0,884	
Z.3			0,822	
Z.4			0,839	
Z.5			0,802	
Z.6			0,836	

Source: Smart PLS 3.3.3

Based on Table 2, it shows that each indicator is able to reflect its construct well and meets convergent validity criteria. Thus, all indicators are declared valid and suitable for use in further structural model testing.

Discriminant Validity

The following table presents the cross-loading findings from the validity test, as follows:

Table 2. Discriminant Validity

	Employee Performance_(Y)	Competence_(X2)	Punishment_(Z)	Reward_(X1)
X1.1	0,770	0,826	0,788	0,902
X1.2	0,797	0,681	0,766	0,800
X1.3	0,727	0,714	0,705	0,849
X1.4	0,670	0,722	0,660	0,855
X1.5	0,708	0,795	0,716	0,830
X2.1	0,695	0,770	0,669	0,699
X2.2	0,690	0,758	0,692	0,625
X2.3	0,696	0,857	0,711	0,745
X2.4	0,737	0,886	0,762	0,796
X2.5	0,792	0,856	0,718	0,795
X2.6	0,737	0,854	0,764	0,736
Y.1	0,825	0,736	0,769	0,706
Y.2	0,865	0,732	0,796	0,734
Y.3	0,803	0,730	0,744	0,731
Y.4	0,821	0,716	0,748	0,745
Y.5	0,855	0,723	0,715	0,710
Z.1	0,768	0,827	0,880	0,789
Z.2	0,827	0,755	0,884	0,774
Z.3	0,737	0,696	0,822	0,720
Z.4	0,732	0,786	0,839	0,751
Z.5	0,760	0,650	0,802	0,659
Z.6	0,761	0,662	0,836	0,660

Source: Smart PLS 3.3.3

Based on Table 2, the results of the discriminant validity test are declared fulfilled, so each construct has uniqueness and does not overlap in measurement.

Composite reliability

Cronbach's alpha, composite reliability, and AVE values can be seen in the table below:

Table 3. Construct Reliability and Validity

	Cronbach's Alpha	Composite Reliability	Average Variance Extracted (AVE)
Employee Performance_(Y)	0,890	0,920	0,696

Competence_(X2)	0,910	0,931	0,691
Punishment_(Z)	0,919	0,937	0,713
Reward_(X1)	0,902	0,927	0,719

Source; Smart PLS 3.3.3

Based on Table 3, all constructs have Cronbach's Alpha and Composite Reliability values above 0.70, which indicates they all meet convergent validity criteria. Thus, the constructs Reward (X1), Competence (X2), Punishment (Z), and Employee Performance (Y) are declared valid and reliable.

Inner Model Analysis

Coefficient of Determination (R^2)

Based on data processing that has been carried out using the SmartPLS 3.0 program, the following R Square values were obtained:

Table 4. R Square Results

	R Square	Adjusted R Square
Employee Performance_(Y)	0,860	0,856
Punishment_(Z)	0,793	0,788

Source; Smart PLS 3.3.3

Based on Table 4, the R Square value for the Employee Performance (Y) variable is 0.860, indicating that 86.0%... The Adjusted R Square value close to R Square indicates that the model has strong and stable explanatory power.

Hypothesis Testing

Determines whether $T\text{-Statistic} > 1.96$ and $P\text{-Values} < 0.05$. Here are the results of the Path Coefficients for direct impact.

Table 5. Direct Hypothesis Results

	Original Sample (O)	T Statistics (O/STDEV)	P Values	Results
Competence_(X2) -> Employee Performance_(Y)	0,227	2,152	0,016	Accepted
Competence_(X2) -> Punishment_(Z)	0,481	5,119	0,000	Accepted
Punishment_(Z) -> Employee Performance_(Y)	0,511	6,625	0,000	Accepted
Reward_(X1) -> Employee Performance_(Y)	0,229	2,617	0,005	Accepted
Reward_(X1) -> Punishment_(Z)	0,436	4,609	0,000	Accepted

Source; Smart PLS 3.3.3

1. Effect of Competence (X2) on Employee Performance (Y)

The test results show that competence has a positive and significant effect on employee performance, with a coefficient value of 0.227, T-statistic 2.152 (> 1.96), and p-value of 0.016 (< 0.05). Thus, the hypothesis stating that competence affects employee performance is accepted.

2. Effect of Competence (X2) on Punishment (Z)

The analysis results show that competence has a positive and significant effect on punishment, with a coefficient value of 0.481, T-statistic 5.119, and p-value of 0.000. This means the higher the employee's competence, the more targeted the application of punishment in the organization. Therefore, the hypothesis is accepted.

3. Effect of Punishment (Z) on Employee Performance (Y)

The test shows that punishment has a positive and significant effect on employee performance, with a coefficient value of 0.511, T-statistic 6.625, and p-value of 0.000. This finding indicates that the appropriate application of punishment can improve employee performance. Thus, the hypothesis is accepted.

4. Effect of Reward (X1) on Employee Performance (Y)

The test results show that reward has a positive and significant effect on employee performance, with a coefficient of 0.229, T-statistic 2.617, and p-value of 0.005. This shows that good reward provision can improve employee performance, so the hypothesis is accepted.

5. Effect of Reward (X1) on Punishment (Z)

The analysis results show that reward has a positive and significant effect on punishment, with a coefficient value of 0.436, T-statistic 4.609, and p-value of 0.000. This finding shows that the reward policy implemented by the organization is related to the punishment mechanism implemented. Thus, the hypothesis is accepted.

Table 6. Indirect Hypothesis Results

	Original Sample (O)	T Statistics (O/STDEV)	P Values	Results
Competence_(X2) -> Punishment_(Z) -> Employee Performance_(Y)	0,246	3,470	0,000	Accepted
Reward_(X1) -> Punishment_(Z) -> Employee Performance_(Y)	0,223	4,444	0,000	Accepted

Source; Smart PLS 3.3.3

6. Effect of Competence (X2) on Employee Performance (Y) through Punishment (Z)

The indirect effect test results show that competence has a positive and significant effect on employee performance through punishment, with a coefficient value of 0.246, T-statistic 3.470 (> 1.96), and p-value of 0.000 (< 0.05). This shows that punishment plays a role as a mediating variable in the relationship between competence and employee performance. Thus, the hypothesis is accepted.

7. Effect of Reward (X1) on Employee Performance (Y) through Punishment (Z)

The analysis results show that reward has a positive and significant effect on employee performance through punishment, with a coefficient value of 0.223, T-statistic 4.444, and p-value of 0.000. This finding indicates that punishment is able to mediate the effect of reward on employee performance. Therefore, the hypothesis is accepted.

Conclusion

1. Competence is proven to have a positive and significant effect in improving employee performance, so the better the competence possessed by employees, their performance will increase.
2. Competence has a positive effect on punishment, indicating that the level of employee competence is related to the accuracy and effectiveness of punishment implementation in the organization.

3. Punishment plays an important role in improving employee performance, especially if applied fairly, consistently, and in accordance with applicable regulations.
4. Reward has a positive effect on employee performance, so that appropriate reward provision is able to encourage performance improvement.
5. Reward affects punishment, indicating a relationship between reward policies and the sanction mechanisms applied by the organization.
6. Punishment is able to mediate the effect of competence on employee performance, so that good competence will more optimally improve performance if supported by effective punishment implementation.
7. Punishment mediates the effect of reward on employee performance, which shows that reward will be more effective in improving performance if accompanied by a clear and structured punishment system.

Suggestions

1. Organizational management is advised to continuously improve employee competence through ongoing training and development so that employee performance can be increasingly optimal.
2. The application of rewards needs to be done fairly, transparently, and based on performance so that it can motivate employees to work better.
3. Punishment should be applied firmly but proportionally, consistently, and in accordance with the rules, so that it functions as a tool for controlling work behavior without reducing employee motivation.
4. Organizations need to align reward and punishment policies to run in balance, so as to create good work discipline and support continuous improvement of employee performance.
5. Subsequent research is suggested to add other variables, such as work motivation, job satisfaction, organizational commitment, or organizational culture, to gain a more comprehensive understanding of factors that influence employee performance.

References

- [1] Armstrong, M. (2017). *Armstrong's handbook of reward management practice: Improving performance through reward* (5th ed.). Kogan Page.
- [2] Boyatzis, R. E. (2017). *The competent manager: A model for effective performance*. John Wiley & Sons.
- [3] Cohen, R. J., Swerdlik, M. E., & Sturman, E. D. (2018). *Psychological testing and assessment* (9th ed.). McGraw-Hill Education.
- [4] Gomes, F. C. (2017). *Manajemen Sumber Daya Manusia*. Andi.
- [5] Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). *A primer on partial least squares structural equation modeling* (PLS-SEM) (2nd ed.). Sage Publications.
- [6] Henseler, J., Ringle, C. M., & Sarstedt, M. (2009). *Using PLS path modeling in international advertising research: Basic concepts and recent issues*. Journal of International Advertising, 38(2), 115-142.
- [7] Henseler, J., Hubona, G., & Ray, P. A. (2016). *Using PLS path modeling in new technology research: Updated guidelines*. Industrial Management & Data Systems, 116(1), 2-20.
- [8] KF Ferine, R Aditia, MF Rahmadana (2021), *An empirical study of leadership, organizational culture, conflict, and work ethic in determining work performance in Indonesia's education authority*, Helyon
- [9] Kock, N., & Lynn, G. S. (2012). *Lateral collinearity and misleading results in variance-based SEM: An illustration and recommendations*. Journal of the Association for Information Systems, 13(7), 546-580.

- [10] Latan, H. (2015). *Structural Equation Modeling: Konsep dan Aplikasi Menggunakan Program LISREL 8.80*. ANDI.
- [11] M Isa Indrawan (2009), *Effect of Competence Komunikasi dan Gaya Kepemimpinan Source Daya Manusia On Kinerja SDM*, Jurnal Ilmiah Abdi Ilmu
- [12] Mathis, R. L., & Jackson, J. H. (2017). *Human resource management (14th ed.)*. Cengage Learning.
- [13] Mondy, R. W., & Martocchio, J. J. (2017). *Human resource management (14th ed.)*. Pearson Education.
- [14] Morling, B. (2017). *Research methods in psychology: Evaluating a world of information* (3rd ed.). W. W. Norton & Company.
- [15] Noe, R. A., Hollenbeck, J. R., Gerhart, B., & Wright, P. M. (2017). *Fundamentals of human resource management* (6th ed.). McGraw-Hill Education.
- [16] Rahayu, Sri. "Effect of Kualitas Source Daya Manusia On Employee Performance Pada Koperasi Unit Desa di Lau Gumba Brastagi Sumatera Utara." *Jurnal Manajemen Tools* 12, no. 1 (2020): 51.
- [17] Robbins, S. P., & Judge, T. A. (2017). *Organizational behavior (17th ed.)*. Pearson Education.
- [18] Spencer, L. M., & Spencer, S. M. (2017). *Competence at work: Models for superior performance*. John Wiley & Sons.
- [19] Sugiyono. (2017). *Metode Penelitian Kuantitatif, Kualitatif, dan R&D*. Alfabeta.
- [20] Sugiyono. (2020). *Metode Penelitian Pendidikan*. Alfabeta.