
Leni Marlina1
1Computational Science and Digital Intelligence

e-mail: lenimarlina@dosen.pancabudi.ac.id1

Obi Yasil Lubis2

1Computational Science and Digital Intelligence

e-mail: obilubis@gmail.com2

2nd International Conference on Islamic Community Studies (ICICS)

Theme: History of Malay Civilisation and Islamic Human Capacity and Halal Hub in the Globalization Era

Page 1406 of 1414

Implementation of Cellular Automata and Fisher Yates Methods

on Map Generators in Building Games Using Unity 3D Game

Engine 2021

Leni Marlina, Obi Yasil Lubis

Abstract

The increasing demand for dynamic and replayable game experiences has led to the widespread

adoption of procedural content generation, particularly in creating non-repetitive and immersive

game environments. This research presents the implementation of Cellular Automata and the

Fisher-Yates Shuffle algorithm to develop an efficient and adaptive map generator system

within a game built using the Unity 3D Game Engine. Cellular Automata is utilized to generate

natural-looking map structures, such as cave-like or maze-like formations, through a grid-based

simulation that evolves over multiple iterations based on the states of neighboring cells. This

method enables the generation of unique and organic map layouts for each game session. To

address potential issues such as disconnected areas and unfair object placement, the Fisher-

Yates Shuffle algorithm is applied to randomly distribute key gameplay elements—including

player spawn points, enemies, and items—across valid and accessible map regions in an

unbiased manner. The system was tested under various parameter configurations to evaluate

map quality, connectivity, and computational performance. The results demonstrate that the

combination of Cellular Automata and Fisher-Yates Shuffle can effectively generate varied,

functional, and aesthetically pleasing maps with high performance and consistency.

Furthermore, Unity 3D proved to be a suitable platform for integrating the procedural

generation system with other game components such as AI navigation and resource

management. This study concludes that integrating Cellular Automata with Fisher-Yates

Shuffle offers a robust solution for creating adaptive procedural map generators that enhance

gameplay diversity, reduce manual level design time, and improve overall player engagement.

Keywords: procedural generation, map generator, Cellular Automata, Fisher-Yates Shuffle,

Unity 3D, game development

mailto:lenimarlina@dosen.pancabudi.ac.id
mailto:obilubis@gmail.com

Leni Marlina, Obi Yasil Lubis

Page 1407 of 1414

Introduction.

As the gaming industry grows rapidly, the amount of content needed in games is

constantly increasing. An increase in the amount of content is needed to keep players interested

in the game, hence the increasing design work is needed to meet these requirements. Creating

in-game content, such as enemies, maps, levels, and items, certainly takes a lot of time and

money. A human usually works very slowly compared to a computer. If such content can be

developed algorithmically, the company that develops the game can save a lot of time and

money in the work of these tasks. PCG or Procedural Content Generation is a way to create

content in the game, which can be in the form of characters, stories, level missions, enemies

and others automatically using certain methods.

Therefore, a game map generator is built dynamically using Procedural Content

Generation (PCG) to automatically build different forms of mapping based on the number code

selected. The automatic form of mapping is arranged in different shapes according to the chosen

number code, of course, creating this content can help make it easier for game makers to work

on each scene in the game they are building.

Games (Games)

According to Santoso, Erick, Gregorius Satia Budhi, and Rolly Intan (2017:9), a game

is a system in which players engage with artificial conflicts. Here the player interacts with the

system and the conflicts in the game are either engineering or artificial. In the game there are

rules that aim to limit player behavior and determine the game. Games aim to entertain,

usually games are widely liked by children to adults. Games are actually important for brain

development, to improve concentration and train to solve problems precisely and quickly

because in games there are various conflicts or problems that require players to solve them

quickly and precisely.

Maze Games

According to Putri, Astrid Novita (2016:2). A maze game is a game of finding a way out,

from several paths in an area of the game. The game template is in the shape of a square or

rectangle whose size can be adjusted according to the user's wishes. Inside there are a series of

paths in the form of branching labyrinths, but not every branch of the labyrinth is a way out

because some are blocked by barrier walls.

Figure 1. Example of a maze game view

Components of the Map Generator

Procedural Content Generation (PCG)

Leni Marlina, Obi Yasil Lubis

Page 1408 of 1414

Linden, et al., (in Setyamurti, Wardhono, Afirianto, 2018:2417) explain that PCG is a

way of creating content by following a certain method that allows content to be generated

automatically. By using the appropriate generation method, various advantages can be obtained,

including:

1. It can reduce the workload of artists and designers.

2. Increase the diversity of content.

Context Selection is a step that functions to select the part of the level to develop. ORE

does not care about the method used in the selection of context as long as it produces one anchor.

The easiest way to choose a context is to randomly select from all the anchors in a level to be

raised

Research Methodology

Application Description

The application developed in this study is focused on the Map Generator making part so

that the game creation for the application of this research is not built in a complex manner.

The Map Generator that will be built will function to make the work of a Game Developer,

especially an Indie Game Developer, easier for them to build game scenes in less time than to

create scenes completely manually.

The Map Generator developed can only process obstacles that have the same side angle

where the shape that can be made by the Map Generator developed in this study is only a map

with a maze shape.

Story Board

In the game to be built, a teenager is assigned as a treasure hunter in a maze for research

purposes and food in the refugee camp. Where the world they inhabit has been polluted by a

zombie outbreak, so later when searching for materials in the maze, these teenagers must avoid

contact with zombies as much as possible so that they can survive in searching for the assigned

materials.

A teenager (Player) walks and avoids contact with zombies in each level in the maze,

later a teenager (Player) has to walk to find materials according to the mission given in each

level, after the materials have been found the point to proceed to the next level will be opened.

When a teenager (Player) has reached the point of moving on to the next level, there will

be a quiz with five questions where the questions contain questions about programming that are

identical to the lessons of vocational students with the Software Engineering (RPL) education

program.

In the game, each enemy character will be given a spotlight on the light, which later a

teenager (Player) must avoid contact with the light. If the teenager (Player) touches the spotlight

of the light, the light will turn red and within a few seconds of being in the point of light, the

main character will be aware of his existence by the enemy and the mission will fail.

 Then there will be several traps or objects that can kill the player, therefore a teenager

(player) must avoid some of these dangerous objects.

Results

Hardware Implementation

The design of the application in this study requires several supporting hardware used in

system development, namely computers with the following specifications:

1. AMD A8-7600 Radeon R7 processor, 10 compute cores 4C+6G 3.10Ghz.

2. Random Access Memory (RAM) 8 GB.

3. Dual Monitor 1600 X 900 pixels.

4. Keyboard and Mouse

Leni Marlina, Obi Yasil Lubis

Page 1409 of 1414

5. Harddisk SSD Kingstone 120 GB.

Software Implementation

The software specifications used in system development are as follows:

Table 1. Software Specifications

Functional Technology Picture Information

Software Game

Engine Development

Multiplatform tools and

services function to

build games with a wide

variety of different

platforms such as 2D,

3D, VR, AR.

Unity3d is the best game

engine developed by unity

technologies and is cross-

platform. This game engine has

the most complete features

with a large community around

the world.

Programming

language

C# version 7.3 with

support for .NET 4.6

equivalent as the

framework.

C# is an object-oriented

programming language that

uses .NET as its framework

where it is able to produce

products in many forms,

especially game products.

Script Editor Visual Studio Code

V.1.44.1

A Script editor capable of

downloading the .NET

framework as a reference

package in C# programming

languages.

OS Windows 10

Professional

Windows 10 is used for

application development

because this operating system

already supports the running

of Unity3d applications. And

this operating system is very

stable for use in system

development

Implementation Tools Android

Android is used for

implementation due to the

general use of android in the

daily environment.

Game Module Process Implementation

The implementation of this application process is carried out using Unity3D Game Engine

and C Sharp (C#) as the programming language.

1. Implementation of Cellular Automata & Fisher Yates Submodules on Map

Generators.

Implementation of map generation with Cellular Automata & Fisher Yates. This

submodule provides the output of the map-forming numeric array. The output is then converted

into string form into input for the Isometric Map Generator Submodule. The class used to

implement the Cellular Automata Map Generator Submodule is the class in the

MapGenerator.cs script. This class represents all object games that will be processed by the

Map Generator built using the Cellular Automata & Fisher Yates method, in this class including

mapping tile ground, obstacle, navmesh, navmask, map size, outline percent, tile size, seed,

foreground/background color, etc..

2. Generate Map in Class MapGenerator.cs

Leni Marlina, Obi Yasil Lubis

Page 1410 of 1414

This class is the first part of MapGenerator.cs coding, in this discussion the coding in

the Map class Generator.cs will be divided into several parts to make it easier to understand.

The coding in this section is used to generate the map generator. Here's the generate map

coding.

Line 1-60 in Class MapGenerator.cs

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class MapGenerator : MonoBehaviour

{

public maps;

public int mapIndex;

public Transform tilePrefab;

public transform[] obstaclePrefab;

public Transform navmeshFloor;

public Transform navmeshMaskPrefab;

public Vector2 maxMapSize;

[Range(0,1)]

public float outlinePercent;

public float tileSize;

List<Coord> allTileCoords;

Tail<Coord> shuffledTileCoords;

Tail<Coord> shuffledOpenTileCoords;

Transform[,] tileMap;

Map currentMap;

void OnNewWave(int waveNumber){

mapIndex = waveNumber -1;

GenerateMap();

}

public void GenerateMap(){

currentMap = maps[mapIndex];

tileMap = new Transform[currentMap.mapSize.x,currentMap.mapSize.y];

System.Random prng = new System.Random (currentMap.seed);

Generating Coords

allTileCoords = new List<Coord>();

for (int x = 0; x < currentMap.mapSize.x; x++){

for (int y = 0; y < currentMap.mapSize.y; y++){

allTileCoords.Add(new Coord(x,y));

}

}

shuffledTileCoords = new Queue<Coord> (Utility.ShuffleArray

(allTileCoords.ToArray(), currentMap.seed));

Create map holder object

stringholderName = "Generate Map";

if(transform. Find(holderName)){

DestroyImmediate(transform. Find(holderName).gameObject);

}

Transform mapHolder = new GameObject (holderName).transform;

 mapHolder.parent = transform;

Figure 2. Map Generator line 1-60 script image

Testing Scenarios

Leni Marlina, Obi Yasil Lubis

Page 1411 of 1414

The test scenarios of the Map Generator Module and Dynamic Levels in the stealth game

are simple.

1. Testing Submodule Cellular Automata Map Generator.

This section describes the testing process for the Cellular Automata & Fisher

Yates Submodule on the Map Generator. The formation of the map will be carried out

with ten different obstacle percent values . There are eight test variables in the formation

of this map, including: Map Size, Obstacle Percent, Seed, Obstacle High Distance,

Foreground & Background Color, Total Obstacle, Outline Percent, Tile Size.

In this test, a map of Cellular Automata & Fisher Yates will be made with a size

of 30 x 20. In this test we will set it with the value seed=1 . The values in each verifiable

to form the game map can be seen in the following table:

Table 2. Testing of Cellular Automata and Fisher Yates

Submodules on Map Generator.

Testing

Test Variables Value

Map Size X:30 x Y:20

Obstacle Percent 0% - 100%

Seed 1

Obstacle High Distance 2-3

Foreground & Background Colour 8E8E8E & B7B7B7 (Hexadecimal)

Total Obstacle 2 Elements

Outline Percent 0.1

Tile Size 2

The process of forming maps in each iteration with different obstacle percent values

using the map generator submodule using the Cellular Automata & Fisher Yates method

is as follows:

Table 3. Testing iteration stage I

Phase Result

Initialization

(Obstacle Percent =

0%)

Iteration 1 (Obstacle

Percent = 10%)

Iteration 2 (Obstacle

Percent = 20%)

Leni Marlina, Obi Yasil Lubis

Page 1412 of 1414

3 iterations

(Obstacle Percent =

30%)

Iteration 4 (Obstacle

Percent = 40%)

Iteration 5 (Obstacle

Percent = 50%)

Iteration 6 (Obstacle

Percent = 60%)

Iteration 7 (Obstacle

Percent = 70%)

Iteration 8 (Obstacle

Percent = 80%)

Iteration 9 (Obstacle

Percent = 90%)

Iteration 10

(Obstacle Percent =

100%)

From the map produced by the Cellular Automata and Fisher Yates methods above,

the forming strings produced in the case of Test I are as follows:

Leni Marlina, Obi Yasil Lubis

Page 1413 of 1414

Table 4. Test map forming string I

The resulting string as a mapmaker in the case of Test I

2#30#20>

12121210001200000002100000210110000110201102112202122210000

11011000010120211110212111012001022122200000102211222201001

20202222100102020122211220020210221102102101210210012120002

20221100002101110111000001212210021102202200220012021201111

00001210110221002202102210000202200020212222000022122122100

01102000111102112002112102111101201102222200002101111100010

00212210000000212210000010200020012102202121000001121220111

22102120110221112110220000022111101210120110121210012211021

10110212011000000022102111001200210220001211212011122210010

0011101102000002120212111002212000001

String length 600 Characters

Conclusion

In the process of the analysis, design, implementation, and testing stages, the following

conclusions were obtained:

1. The ratio of the area of the game map area in the process of forming a map generator

with the Cellular Automata and Fisher Yates methods greatly affects the shape of the

resulting map.

2. By applying the Fisher yates method to the map generator generated by the Cellular

Automata method, the mapping results are more complex, so that there is no part of

the ground on the map that cannot be reached by the player later.

3. The obstacles generated on the maze-shaped map can only be tiled with the same side

size, otherwise the resulting map will not have a complex maze shape.

4. The length of map data generated by the map generator is arguably limited because it

can only store up to 2,147,483,647 map data with different map shapes.

5. In building the game this Map Generator is very helpful in creating game maps with

very easy and fast map creation compared to building the entire map manually.

References

[1] Santoso, Erick, Gregorius Satia Budhi, and Rolly Intan, 2015. DESIGN OF

EDUCATIONAL GAME APPLICATIONS USING WATERFALL MODEL, Garut

Teacher Training and Education College Volume.3 Number 1, March 2017.

[2] Putri, Astrid Novita, 2016. OPTIMIZATION OF ALGHORITMA BREADTH FIRST

SEARCH ON GAME ENGINE 3D THIRD PERSON SHOOTER MAZE BASED ON

ANDROID INTELLIGENT AGENT, UNIVERSITY OF SEMARANG Volume.14

Number 1, July 2016.

[3] Setyamurti, Anindita, Wibisono Sukmo, Tri Afirianto, 2018. Implementation of Procedural

Generation to Build Tactical RPG Level using the Occupancy Regulated Extension

Method, Universitas Brawijaya Volume.2 Number 8, August 2018.

[4] Septiono, Dony Setiawan and Mussadun, 2016. LAND USE CHANGE MODEL TO

SUPPORT FOREST MANAGEMENT UNIT MANAGEMENT PLAN (Case Study of

KPH Yogyakarta) Universitas Brawijaya Volume.2 Number 8, 2018.

[5] Sulistya, Indah Erika and Febri Maspiyanti, 2018. LEGEND GAME OF THE ORIGIN OF

LAKE TOBA BASED ON DESKTOP, Pancasila University Volume.9 Number 2, July

2018.

Leni Marlina, Obi Yasil Lubis

Page 1414 of 1414

[6] Darmawan, Aspian and Mei P Kurniawan, 2016. DESIGN AND MANUFACTURE OF

SURVIVAL HORROR GAME "I FOUND YOU" USING UNITY 3D GAME ENGINE

STMIK AMIKOM, Yogyakarta, June 2016.

[7] Ginting, Budi Serasi, Fajar Ramadhan, 2018. ARTIFICIAL INTELLIGENCE-BASED

BECOME A KING GAME DESIGN, STMIK Kaputama Binjai Volume.2 Number 1,

April 2018.

[8] Dedi Nugraha, Sri Winiarti, 2014. DEVELOPMENT OF LEARNING MEDIA

TRACKING SYSTEM IN MULTIMEDIA-BASED ARTIFICIAL INTELLIGENCE

COURSE, AHMAD DAHLAN UNIVERSITY Volume.2 Number 1, February 2014.

[9] Rodianto, Eva Sapitri Andani, 2019. ACADEMIC ADMINISTRATION INFORMATION

SYSTEM IN WEB-BASED TUTORING (CASE STUDY OF DILA SAMAWA),

SUMBAWA UNIVERSITY OF TECHNOLOGY, VOLUME.1 Number 1, August 2019.

[10] Ade Sutedi, Cepy Slamet, Dhami Johar Damari, 2015. DESIGN AND BUILD AN OPEN

ACCESS JOURNAL USING THE OBJECT-ORIENTED METHOD WITH A UML-

BASED WEB ENGINEERING APPROACH. Garut College of Technology, Volume.12

Number 1, Garut 2015.

[11] Rosa A.S., M.Shalahuddin, 2014. Software Engineering, Informatics, Bandung 2013.

[12] Suendri, 2018. Implementation of UML (Unified Modelling Language) Diagram in the

Design of Lecturer Remuneration Information System with Oracle University Database of

Univer, State Islamic University of North Sumatra, Volume.03 Number 01, November

2018.

[13] Fikria, Balqis Kamalia, 2014. IMPLEMENTATION OF THE FISHER-YATES

SHUFFLE ALGORITHM AS A RANDOMIZER OF NON-PLAYABLE CHARACTER

(NPC) POSITIONS IN THE MARINE TANTRA GAME. Maulana Malik Ibrahim State

Islamic University. Malang, November 2014.

[14] Hanggoro, Kridalukmana, Martono, 2015. Creation of Unity-Based "Clean Jakarta" Game

Application, Faculty of Engineering, Diponegoro University, Volume.3 Number 4,

October 2015.

[15] Gurupendidikan.co.id. (2021). Flowchart symbols. Retrieved March 09, 2021, from

https://www.gurupendidikan.co.id/simbol-flowchart/

