Forecasting Salary Ranges for IT Professional in Marketplace Employing The Support Vector Machine Technique
Keywords:
Support Vector Machine (SVM), Salary Prediction, IT Professions, Marketplace, Classification.Abstract
The advancement of the digital sector in Indonesia has resulted in a heightened demand for IT professionals. Additionally, there is a requirement to analyze and outline salary levels according to job profiles to foster transparency and efficiency during recruitment. This research seeks to forecast salary categories for IT positions utilizing the Support Vector Machine (SVM) technique at prominent marketplace companies, including Gojek, Shopee, Tokopedia, Traveloka, Tiket.Com, and Bukalapak. The dataset utilized comprises 611 records and features attributes like company, work location, experience, skills, and salary. The preprocessing steps include label encoding, numerical normalization, and multi-hot encoding for the skills features. Salary categories are classified into three groups: low, medium, and high. The SVM model is trained using a Radial Basis Function (RBF) kernel and assessed with metrics such as accuracy, precision, recall, and f1-score. The evaluation outcomes indicate that the SVM model effectively categorizes salary levels with an accuracy of 82%. This model exhibits its strongest performance in the Medium salary category, achieving an f1-score of 0.93. This research demonstrates that SVM can serve as an efficient alternative for developing a prediction system for IT salary categories.
References
M. Bakhar et al., Perkembangan Startup Di Indonesia (Perkembangan Startup di Indonesia dalam berbagai bidang), no. May. 2023. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=MR7eEAAAQBAJ&oi=fnd&pg=PA44&dq=pentingnya+pemahaman+terhadap+kekayaan+budaya+dalam+negeri+menjadi+lebih+kritis+karena+adanya+risiko+bahwa+%22nilai+nilai%22+budaya+daerah+dapat+terpinggirkan+oleh+arus+informasi+g
M. S. Novelan, S. Efendi, P. Sihombing, and H. Mawengkang, “Vehicle Routing Problem Optimization With Machine Learning in Imbalanced Classification Vehicle Route Data,” Eastern-European J. Enterp. Technol., vol. 5, no. 3(125), pp. 49–56, 2023, doi: 10.15587/1729-4061.2023.288280.
A. Khaliq, E. Hariyanto, and S. Batubara, “Predict App Rank on Google Play Using the Random Forest Method,” Int. J. Res. Rev., vol. 8, no. 9, pp. 436–441, 2021, doi: 10.52403/ijrr.20210955.
J. Iqbal Wiranata Siregar et al., “Sentiment Classification on E-Commerce User Reviews With Natural Languange Processing (Nlp) and Support Vector Machine (Svm) Methods,” Int. J. Comput. Sci. Math. Eng., vol. 4, no. 1, pp. 1–5, 2025.
A. Helmy, Z. Sitorus, D. Ardya, A. C. Hrp, S. I. S. T, and S. Sukrianto, “Analysis of Social Assistance Donor Classification at the Muhammadiyah Medan Orphanage Using SVM,” Sinkron, vol. 9, no. 1, pp. 283–290, 2025, doi: 10.33395/sinkron.v9i1.14299.
T. I. Hermanto, A. Idrus, L. Sugiyanta, D. Nasution, and I. Gunawan, “Neural Network Back-Propagation Method as Forecasting Technique,” J. Phys. Conf. Ser., vol. 2394, no. 1, 2022, doi: 10.1088/1742-6596/2394/1/012002.
A. Y. Firdasanti, A. D. Khailany, N. A. Dzulkirom, T. M. P. Sitompul, and A. Savirani, “Mahasiswa dan Gig Economy: Kerentanan Pekerja Sambilan (Freelance) di Kalangan Tenaga Kerja Terdidik,” J. PolGov, vol. 3, no. 1, pp. 195–234, 2021, doi: 10.22146/polgov.v3i1.2866.
R. Yustiani and R. Yunanto, “Ilmiah Komputer dan Peran Marketplace Sebagai Alternatif Bisnis di Era Ilmiah Komputer dan,” J. Ilm. Komput. dan Infromatika, vol. 6, no. 2, pp. 43–48, 2017.
D. N. V. S. Vamsi and S. Mehrotra, “Comparative Analysis of Machine Learning Algorithms for Predicting Mobile Price,” Lect. Notes Networks Syst., vol. 719 LNNS, pp. 607–615, 2023, doi: 10.1007/978-981-99-3758-5_55.
Zulham Sitorus, Eko Hariyanto, and Fahmi Kurniawan, “Analysis of Artificial Intelligence Machine Learning Technology for Mapping and Predicting Flood Locations in Pahlawan Batu Bara Village,” Int. J. Comput. Sci. Math. Eng., vol. 2, no. 2, pp. 281–288, 2023, doi: 10.61306/ijecom.v2i2.54.
A. Roihan, P. A. Sunarya, and A. S. Rafika, “Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper,” IJCIT (Indonesian J. Comput. Inf. Technol., vol. 5, no. 1, pp. 75–82, 2020, doi: 10.31294/ijcit.v5i1.7951.
A. Mudya Yolanda and R. Tri Mulya, “Implementasi Metode Support Vector Machine untuk Analisis Sentimen pada Ulasan Aplikasi Sayurbox di Google Play Store,” VARIANSI J. Stat. Its Appl. Teach. Res., vol. 6, no. 2, pp. 76–83, 2024, doi: 10.35580/variansiunm258.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Zulham Sitorus, Ahmad Helmy; Abdul Chaidir H, Dwika Ardiya, Sukrianto

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.




