Machine Learning Utilization to Predict Potential At-Risk Students in Higher Education: A Literature Review
Keywords:
Machine Learning, Predictive Models, Higher Education, Theoretical Models, Literature Review, Artificial IntelligenceAbstract
A prosperous and functional society always requires capable and qualified human resources to operate. Ensuring its continuity demands the success of education as the foundation for fostering and nurturing future generations and enhancing human capacity. This study aims to provide insights into various state-of-the-art predictive models to improve student retention in higher education. This study examined 37 reputable papers selected through systematic literature review techniques and discussed 7 theoretical models, 7 relational models, and 14 predictive models. The best predictive models were able to attain 93.0% accuracy using linear regression and random forest algorithms. The study found that the development of predictive machine learning requires thorough planning and preparation suited to each educational institution, and its utilization is highly recommended to enhance student retention in higher education.
References
A. M. Mariano, A. B. De Magalhães Lelis Ferreira, M. R. Santos, M. L. Castilho, and A. C. F. L. C. Bastos, “Decision trees for predicting dropout in Engineering Course students in Brazil,” Procedia Comput. Sci., vol. 214, no. C, pp. 1113–1120, 2022, doi: 10.1016/j.procs.2022.11.285.
P. Nuankaew, “Dropout situation of business computer students, University of Phayao,” Int. J. Emerg. Technol. Learn., vol. 14, no. 19, pp. 117–131, Oct. 2019, doi: 10.3991/ijet.v14i19.11177.
L. Beltrán, D. E. Gibaja-Romero, and R. M. Cantón-Croda, “Characterizing intercampus migration in a private university of Baja California, Mexico,” F1000Research, vol. 11, p. 678, Jun. 2022, doi: 10.12688/f1000research.111079.1.
M. F. Musso, C. F. R. Hernández, and E. C. Cascallar, “Predicting key educational outcomes in academic trajectories: a machine-learning approach,” High. Educ., vol. 80, no. 5, pp. 875–894, Nov. 2020, doi: 10.1007/s10734-020-00520-7.
D. Uliyan, A. S. Aljaloud, A. Alkhalil, H. S. Al Amer, M. A. E. A. Mohamed, and A. F. M. Alogali, “Deep Learning Model to Predict Students Retention Using BLSTM and CRF,” IEEE Access, vol. 9, pp. 135550–135558, 2021, doi: 10.1109/ACCESS.2021.3117117.
C. Dewberry and D. J. R. Jackson, “An application of the theory of planned behavior to student retention,” J. Vocat. Behav., vol. 107, pp. 100–110, Aug. 2018, doi: 10.1016/j.jvb.2018.03.005.
M. Baranyi, M. Nagy, and R. Molontay, “Interpretable Deep Learning for University Dropout Prediction,” in SIGITE 2020 - Proceedings of the 21st Annual Conference on Information Technology Education, Oct. 2020, pp. 13–19. doi: 10.1145/3368308.3415382.
K. Muenks et al., “Does my professor think my ability can change? Students’ perceptions of their STEM professors’ mindset beliefs predict their psychological vulnerability, engagement, and performance in class.,” J. Exp. Psychol. Gen., vol. 149, no. 11, pp. 2119–2144, Nov. 2020, doi: 10.1037/xge0000763.
O. Kryshko, J. Fleischer, J. Waldeyer, J. Wirth, and D. Leutner, “Do motivational regulation strategies contribute to university students’ academic success?,” Learn. Individ. Differ., vol. 82, p. 101912, Aug. 2020, doi: 10.1016/j.lindif.2020.101912.
A. J. Fernandez-Garcia, J. C. Preciado, F. Melchor, R. Rodriguez-Echeverria, J. M. Conejero, and F. Sanchez-Figueroa, “A real-life machine learning experience for predicting university dropout at different stages using academic data,” IEEE Access, vol. 9, pp. 133076–133090, 2021, doi: 10.1109/ACCESS.2021.3115851.
J. M. Ryan, T. Potier, A. Sherwin, and E. Cassidy, “Identifying factors that predict attrition among first year physiotherapy students: a retrospective analysis,” Physiother. (United Kingdom), vol. 110, pp. 26–33, Mar. 2021, doi: 10.1016/j.physio.2017.04.001.
C. Bargmann, L. Thiele, and S. Kauffeld, “Motivation matters: predicting students’ career decidedness and intention to drop out after the first year in higher education,” High. Educ., vol. 83, no. 4, pp. 845–861, Apr. 2022, doi: 10.1007/s10734-021-00707-6.
L. M. Jeno, J. Nylehn, T. N. Hole, A. Raaheim, G. Velle, and V. Vandvik, “Motivational Determinants of Students’ Academic Functioning: The Role of Autonomy-support, Autonomous Motivation, and Perceived Competence,” Scand. J. Educ. Res., vol. 67, no. 2, pp. 194–211, Feb. 2021, doi: 10.1080/00313831.2021.1990125.
S. L. Petersen, E. S. Erenrich, D. L. Levine, J. Vigoreaux, and K. Gile, “Multi-institutional study of GRE scores as predictors of STEM PhD degree completion: GRE gets a low mark,” PLoS One, vol. 13, no. 10, p. e0206570, Oct. 2018, doi: 10.1371/journal.pone.0206570.
D. K. Benden and F. Lauermann, “Students’ Motivational Trajectories and Academic Success in Math-Intensive Study Programs: Why Short-Term Motivational Assessments Matter,” J. Educ. Psychol., vol. 114, no. 5, pp. 1062–1085, Jul. 2022, doi: 10.1037/edu0000708.
Y. Wen, Y. Tian, B. Wen, Q. Zhou, G. Cai, and S. Liu, “Consideration of the local correlation of learning behaviors to predict dropouts from MOOCs,” Tsinghua Sci. Technol., vol. 25, no. 3, pp. 336–347, Jun. 2020, doi: 10.26599/TST.2019.9010013.
A. Ortigosa, R. M. Carro, J. Bravo-Agapito, D. Lizcano, J. J. Alcolea, and Ó. Blanco, “From Lab to Production: Lessons Learnt and Real-Life Challenges of an Early Student-Dropout Prevention System,” IEEE Trans. Learn. Technol., vol. 12, no. 2, pp. 264–277, Apr. 2019, doi: 10.1109/TLT.2019.2911608.
M. Jawthari and V. Stoffa, “Predicting At-Risk Students Using Weekly Activities and Assessments,” Int. J. Emerg. Technol. Learn., vol. 17, no. 19, pp. 59–73, Oct. 2022, doi: 10.3991/ijet.v17i19.31349.
E. J. Lizarte Simón and J. Gijón Puerta, “Prediction of early dropout in higher education using the SCPQ,” Cogent Psychol., vol. 9, no. 1, p. 2123588, Dec. 2022, doi: 10.1080/23311908.2022.2123588.
M. Morelli, A. Chirumbolo, R. Baiocco, and E. Cattelino, “Academic failure: Individual, organizational, and social factors,” Psicol. Educ., vol. 27, no. 2, pp. 167–175, May 2021, doi: 10.5093/psed2021a8.
P. De-La-Cruz, R. Rojas-Coaquira, H. Vega-Huerta, J. Pérez-Quintanilla, and M. Lagos-Barzola, “A Systematic Review Regarding the Prediction of Academic Performance,” J. Comput. Sci., vol. 18, no. 12, pp. 1219–1231, Dec. 2022, doi: 10.3844/jcssp.2022.1219.1231.
S. Alturki, I. Hulpuș, and H. Stuckenschmidt, “Predicting Academic Outcomes: A Survey from 2007 Till 2018,” Technol. Knowl. Learn., vol. 27, no. 1, pp. 275–307, Mar. 2022, doi: 10.1007/s10758-020-09476-0.
M. Adnan et al., “Predicting at-Risk Students at Different Percentages of Course Length for Early Intervention Using Machine Learning Models,” IEEE Access, vol. 9, pp. 7519–7539, 2021, doi: 10.1109/ACCESS.2021.3049446.
S. C. Tsai, C. H. Chen, Y. T. Shiao, J. S. Ciou, and T. N. Wu, “Precision education with statistical learning and deep learning: a case study in Taiwan,” Int. J. Educ. Technol. High. Educ., vol. 17, no. 1, p. 12, Dec. 2020, doi: 10.1186/s41239-020-00186-2.
E. J. M. Bakker et al., “Physical and mental determinants of dropout and retention among nursing students: Protocol of the SPRiNG cohort study,” BMC Nurs., vol. 17, no. 1, p. 27, Dec. 2018, doi: 10.1186/s12912-018-0296-9.
L. Bardach, M. Lüftenegger, S. Oczlon, C. Spiel, and B. Schober, “Context-related problems and university students’ dropout intentions—the buffering effect of personal best goals,” Eur. J. Psychol. Educ., vol. 35, no. 2, pp. 477–493, Jun. 2020, doi: 10.1007/s10212-019-00433-9.
F. Jiménez, A. Paoletti, G. Sánchez, and G. Sciavicco, “Predicting the Risk of Academic Dropout with Temporal Multi-Objective Optimization,” IEEE Trans. Learn. Technol., vol. 12, no. 2, pp. 225–236, Apr. 2019, doi: 10.1109/TLT.2019.2911070.
A. Kelava, P. Kilian, J. Glaesser, S. Merk, and H. Brandt, “Forecasting Intra-individual Changes of Affective States Taking into Account Inter-individual Differences Using Intensive Longitudinal Data from a University Student Dropout Study in Math,” Psychometrika, vol. 87, no. 2, pp. 533–558, Jun. 2022, doi: 10.1007/s11336-022-09858-6.
R. Z. Pek, S. T. Ozyer, T. Elhage, T. Ozyer, and R. Alhajj, “The Role of Machine Learning in Identifying Students At-Risk and Minimizing Failure,” IEEE Access, vol. 11, pp. 1224–1243, 2022, doi: 10.1109/ACCESS.2022.3232984.
K. Oqaidi, S. Aouhassi, and K. Mansouri, “Towards a Students’ Dropout Prediction Model in Higher Education Institutions Using Machine Learning Algorithms,” Int. J. Emerg. Technol. Learn., vol. 17, no. 18, pp. 103–117, Sep. 2022, doi: 10.3991/ijet.v17i18.25567.
A. J. Fernández-García, R. Rodríguez-Echeverría, J. C. Preciado, J. M. Conejero Manzano, and F. Sánchez-Figueroa, “Creating a recommender system to support higher education students in the subject enrollment decision,” IEEE Access, vol. 8, pp. 189069–189088, 2020, doi: 10.1109/ACCESS.2020.3031572.
K. Barbara and C. Stuart, “Guidelines for performing Systematic Literature Reviews in Software Engineering version 2.3,” 2007. doi: 10.1541/ieejias.126.589.
L. Respondek, T. Seufert, J. M. Hamm, and U. E. Nett, “Linking changes in perceived academic control to university dropout and university grades: A longitudinal approach,” J. Educ. Psychol., vol. 112, no. 5, pp. 987–1002, Jul. 2020, doi: 10.1037/edu0000388.
Z. Xie, “Modelling the dropout patterns of MOOC learners,” Tsinghua Sci. Technol., vol. 25, no. 3, pp. 313–324, Jun. 2020, doi: 10.26599/TST.2019.9010011.
Y. Zheng, Z. Gao, Y. Wang, and Q. Fu, “MOOC Dropout Prediction Using FWTS-CNN Model Based on Fused Feature Weighting and Time Series,” IEEE Access, vol. 8, pp. 225324–225335, 2020, doi: 10.1109/ACCESS.2020.3045157.
C. Imhof, I. S. Comsa, M. Hlosta, B. Parsaeifard, I. Moser, and P. Bergamin, “Prediction of Dilatory Behavior in eLearning: A Comparison of Multiple Machine Learning Models,” IEEE Trans. Learn. Technol., pp. 1–15, 2022, doi: 10.1109/TLT.2022.3221495.
J. Marôco et al., “Predictors of academic efficacy and dropout intention in university students: Can engagement suppress burnout?,” PLoS One, vol. 15, no. 10 October, p. e0239816, Oct. 2020, doi: 10.1371/journal.pone.0239816.
S. Langness, N. Rajapuram, M. Marshall, A. S. Rahman, and A. Sammann, “Risk factors associated with student distress in medical school: Associations with faculty support and availability of wellbeing resources,” PLoS One, vol. 17, no. 4 April, p. e0265869, Apr. 2022, doi: 10.1371/journal.pone.0265869.
N. Gillet, A. J. S. Morin, T. Huyghebaert-Zouagh, E. Alibran, S. Barrault, and C. Vanhove-Meriaux, “Students’ Need Satisfaction Profiles: Similarity and Change over the Course of a University Semester,” Appl. Psychol., vol. 69, no. 4, pp. 1396–1437, Sep. 2020, doi: 10.1111/apps.12227.
J. M. Dopmeijer et al., “The role of performance pressure, loneliness and sense of belonging in predicting burnout symptoms in students in higher education,” PLoS One, vol. 17, no. 12 December, p. e0267175, Dec. 2022, doi: 10.1371/journal.pone.0267175.
M. L. Farnese, P. Spagnoli, and S. Livi, “Undergraduates’ academic socialization. A cross-time analysis,” Br. J. Educ. Psychol., vol. 92, no. 4, pp. 1239–1255, Dec. 2022, doi: 10.1111/bjep.12497.
F. Belloc, A. Maruotti, and L. Petrella, “University drop-out: An Italian experience,” High. Educ., vol. 60, no. 2, pp. 127–138, 2010, doi: 10.1007/s10734-009-9290-1.
N. V. Ivanova and M. A. Vinogradova, “Plot-Didactic Game System Design in the Formation of a Digital Footprint in Preschool Children Career Guidance Based on Gamification,” in International Scientific Conference “Digitalization of Education: History, Trends and Prospects”(DETP 2020), 2020, pp. 850–858. doi: 10.2991/assehr.k.200509.151.
A. Behr, M. Giese, H. D. Teguim Kamdjou, and K. Theune, “Dropping out of university: a literature review,” Rev. Educ., vol. 8, no. 2, pp. 614–652, 2020.
A. Esteban, A. Zafra, and C. Romero, “Helping university students to choose elective courses by using a hybrid multi-criteria recommendation system with genetic optimization,” Knowledge-Based Syst., vol. 194, p. 105385, 2020, doi: 10.1016/j.knosys.2019.105385.
E. G. Galimova, A. V Konysheva, O. A. Kalugina, and Z. M. Sizova, “Digital educational footprint as a way to evaluate the results of students’ learning and cognitive activity in the process of teaching mathematics,” Eurasia J. Math. Sci. Technol. Educ., vol. 15, no. 8, 2019, doi: 10.29333/ejmste/108435.
G. Conole, Designing for learning in an open world, vol. 4. Springer Science & Business Media, 2013. doi: 10.1007/978-1-4419-8517-0.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ahmad Yazid, Melva Sari Panjaitan; Fetty Fitriyanti Lubis, Yusep Romansyah

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.




